A multivariate time-series approach to marital interaction

نویسندگان

  • Jörg Kupfer
  • Burkhard Brosig
  • Elmar Brähler
چکیده

Time-series analysis (TSA) is frequently used in order to clarify complex structures of mutually interacting panel data. The method helps in understanding how the course of a dependent variable is predicted by independent time-series with no time lag, as well as by previous observations of that dependent variable (autocorrelation) and of independent variables (cross-correlation).The study analyzes the marital interaction of a married couple under clinical conditions over a period of 144 days by means of TSA. The data were collected within a course of couple therapy. The male partner was affected by a severe condition of atopic dermatitis and the woman suffered from bulimia nervosa.Each of the partners completed a mood questionnaire and a body symptom checklist. After the determination of auto- and cross-correlations between and within the parallel data sets, multivariate time-series models were specified. Mutual and individual patterns of emotional reactions explained 14% (skin) and 33% (bulimia) of the total variance in both dependent variables (adj. R(2), p<0.0001 for the multivariate models).The question was discussed whether multivariate TSA-models represent a suitable approach to the empirical exploration of clinical marital interaction.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A General Systems Theory of Marriage: Nonlinear Difference Equation Modeling of Marital Interaction

This article describes a new mathematical approach for modeling the prediction of divorce or marital stability from marital interaction using nonlinear difference equations. The approach is quite general for modeling social interaction, and can be applied to any time series data generated over time for two individuals. We pursued a balance model in selecting the dependent variables of this mode...

متن کامل

Missing data imputation in multivariable time series data

Multivariate time series data are found in a variety of fields such as bioinformatics, biology, genetics, astronomy, geography and finance. Many time series datasets contain missing data. Multivariate time series missing data imputation is a challenging topic and needs to be carefully considered before learning or predicting time series. Frequent researches have been done on the use of diffe...

متن کامل

The Comparison of Mood Characteristics and Components of Marital Interaction in mothers regards to range of visually impairment in children

Aim: The current study was adminstrated with the aim of investigating mood characteristics and components of marital interaction in mothers with one or more than one child with visually impairment. Method: The research method was descriptive and the design ‎was ex post facto. The population of this study was three categories of mothers with one child, more than one child with visually impairme...

متن کامل

Identification of outliers types in multivariate time series using genetic algorithm

Multivariate time series data, often, modeled using vector autoregressive moving average (VARMA) model. But presence of outliers can violates the stationary assumption and may lead to wrong modeling, biased estimation of parameters and inaccurate prediction. Thus, detection of these points and how to deal properly with them, especially in relation to modeling and parameter estimation of VARMA m...

متن کامل

An Empirical Comparison of Distance Measures for Multivariate Time Series Clustering

Multivariate time series (MTS) data are ubiquitous in science and daily life, and how to measure their similarity is a core part of MTS analyzing process. Many of the research efforts in this context have focused on proposing novel similarity measures for the underlying data. However, with the countless techniques to estimate similarity between MTS, this field suffers from a lack of comparative...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2005